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Abstract:

Electrospun  nanofibers  have  gained  great  attention  in  the  biomedical  industry,  especially  in  tissue  engineering,  because  of  their  interesting
properties that promote cell growth and tissue cicatrization or regeneration, where any biological tissue can be beneficiated by choosing the proper
biomaterials. Hence, the objective of this perspective article is to give an insight into the desired properties of the electrospun nanofibers dedicated
to the tissue engineering approach. A high tensile strength, flexibility, reduced permeability of water, high surface area, biocompatibility, and
biodegradability are some of the properties recognized and discussed to be more important for tissue engineering applications. The purpose of
these properties is to mimic the surrounding tissue or create the optimal condition for the targeted cell growth. Despite all the reported literature, it
still is missing a complete screening of the above mentioned properties specific to their respective target tissues.
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1. INTRODUCTION

The  value  of  the  electrospinning  technique  has  been
reported over the last 10 years [1 - 13]. This technique leads to
the production of versatile nanofibers that possess a diverse set
of properties [3] and can be used in several applications such as
tissue engineering [1, 2, 4, 12], drug delivery systems [4, 5, 7,
8, 10, 11], and biotechnology [6, 13], amongst others.

Among  the  interesting  properties  of  electrospun
nanofibers,  the  high  tensile  strength,  flexibility,  reduced
permeability  of  water  [14],  high  surface  area  [15],
biocompatibility  [2],  and  biodegradability  [16],  are  a  few
mentioned.

The above properties can always be designed through the
choice of a specific polymer [4] that is used as a matrix and can
be functionalized with a great variety of biomaterials such as
metals [9, 12], ceramics [1, 2] or other polymers [6, 13], these
above biomaterials can be used to functionalize the nanofibers
with extra properties.

Such  is  the  case  of  the  integration  of  an  antimicrobial
effect  on the nanofibers  thanks to  some bioactive properties,
for  example,  silver  nanoparticles  [12]  and  curcumin  [13],  or
conductive  properties  by  adding  graphene  [17],  polyaniline
[18] or having therapeutics effect loading pharmaceutical drugs
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in/on the surface of the nanofibers such as dexamethasone [10],
sildenafil citrate [11], just to mention some examples.

Tissue engineering is  one of  the approaches beneficiated
by  the  electrospun  technology  [1  -  4],  because  nanofibers
create a tridimensional structure that simulates the extracellular
matrix  made  by  tissues  (Fig.  1).  These  structures  can  be
prepared  with  biomaterials  that  resemble  the  chemical
composition of tissues, using natural biomaterials, for example,
hydroxyapatite [1, 2] which promotes the regeneration of bone
tissue.  By  the  same  time,  the  nanofibers  are  reabsorbed  and
become  part  of  the  tissue  [19].  The  main  objective  of  tissue
engineering is to avoid tissue and organ transplantation. Hence,
natural  and  synthetic  biomaterials  are  provided  through  the
electrospinning  technique  of  3D  tissue  formation,  which  is
regularly enhanced by the seeding of the cells into the material
structure.

In Fig. (1), it can be observed that electrospun fibers with
different  diameters  (yellow  arrows)  create  a  tridimensional
scaffold that resembles the extracellular matrix of tissues.

Despite  all  tissues  can  be  susceptible  to  the  use  of
electrospun  nanofibers  for  regeneration/cicatrization
improvement,  just  a  few  of  them  have  been  extensively
studied,  such as  bone [1,  2,  4,  14,  16,  17,  19],  cartilage  [20,
21], and skin [4, 12, 18], this can be due to the accessibility of
the  tissue  and  less  complicated  applicative  experiments  in
universities  or  research  institutes  [7].
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Fig. (1). Tridimensional matrix made by electrospun nanofibers.

For  tissue  regeneration,  bioactivity,  biocompatibility,
biodegradability,  and adequate  mechanical  properties  are  the
main  factors  to  resolve  in  the  design  of  an  excellent  system
[12].

Bioactivity can be incorporated on the surface of the fibers
in case the polymeric blend has no bioactivity by itself (such as
collagen or hydroxyapatite [1, 2] whose sole presence increases
the stimulation of bone formation), for example, antimicrobial
agents [12, 13], proliferation enhancers such as growth factors
[22], pharmaceutical drugs for tissue stress relief [23], being all
these additions promoter of enhancers of the function of the 3D
structure of the scaffolds.

Conversely,  biodegradability  offers  a  lifetime  of  the
scaffolds to prevent overstaying its presence in the tissue and
avoiding additional surgery or treatments, and this degradation
time is dependent on the severity of the lesion and the rate at
which the  tissue  is  proliferating [24].  Moreover,  degradation
metabolites  have  to  be  carefully  considered  in  designing  an
implantable  scaffold  because  this  bioproduct  will  lead to  the
success or failure of the membrane [25].

Mechanical  properties  of  the  scaffolds  depend  on  the
tissue,  the  zone  of  implantation,  and  handling  requirements
[12].  These  properties  vary  and  always  are  desired  that  the
mechanical properties of the scaffolds assemble in the tissue.
The  adequate  characteristics  of  the  fibers  are  crucial  to  the
successful use of the system due to their structural support for

the newly formed tissue [26].

Finally, biocompatibility is the most important feature of
the  electrospun  scaffolds  for  tissue  engineering  since  the
implanted materials have to realize a specific function with an
adequate  response  from  the  surrounding  tissue  and  not  over
stress [1, 2, 12]. With this property, cytotoxicity is avoided and
tissue  response  is  evaluated.  The  equilibrium  between
bioactivity,  biodegradability,  and  mechanical  properties  is
desired depending on the specific tissue and injury to treat [4,
22, 23].

Research  groups  that  are  dedicated  to  tissue  engineering
and proposed electrospun nanofibers need to carefully study all
these features and demonstrate the feasibility of their systems.
Biomedical  systems  always  need  not  to  be  toxic  and  do  not
provoke chronic alteration of the tissue.

2. BIODEGRADABILITY

The biodegradability of the electrospun fibers depends on
the chosen polymer used to fabricate the fibers. Biodegradable
polymers propose significant advantages for disposable or fast
consuming products in medical applications [27].

The poly (hydroxyalkanoates) (PHA), a class of naturally
occurring  poly  (esters)  that  are  secondary  metabolites  of
microorganisms  in  excess  of  carbon  source  conditions,  are
among  the  most  significant  biodegradable  polymers  and  are
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highly recommended for biomedical applications due to their
biodegradability [27].

Moreover,  biodegradable  aliphatic  polyesters  (poly
(lactide) (PLA), poly (glycolide) (PGA), and poly (lactide-co-
glycolide)  (PLGA)  are  the  most  characteristic  synthetic
polymers  for  tissue  engineering  and  regenerative  medicine.
Despite that, aseptic inflammation is one of their disadvantages
due to their acidic degradation creating conditions for further
implantation [28].

The  desired  degradation  time  of  the  electrospun  fibres
varies  depending  on  the  application;  some,  like  poly  (vinyl
pyrrolidone)  (PVP)  [29],  are  designed  to  disintegrate  in
seconds, while others, like poly (caprolactone) (PCL) [30], are
intended to degrade over the years.

In  Table  1  are  enlisted  some  examples  of  biodegradable
polymers that can be used in the electrospinning technique and
have been used for tissue engineering.

Table  1.  Some  examples  of  biodegradable  electrospun
fibers  for  tissue  engineering.

Electrospun
Fibers

Biodegradable
Polymers

Degradation
Time

Application Refs.

PHBV PHBV 420 days Osteoblast and
fibroblast

regeneration

[27]

CTS/PLGA PLGA Several weeks
to several

months (55
days)

Amelioration
inflammatory

responses

[28]

GT/PCL PCL 2 or 3 years Postoperative
Cardiac

Adhesion

[30]

PLCL PLCL 72 days at 50
°C, 177 days

at 37 °C

Orthopedic
shoulder
surgery

[31]

PPC PPC 8 months Peripheral
nerve

regeneration

[32]

CTS/PU PU 20-23 years Soft tissue
engineering

[33]

PLA/PEG PEG 10-12 hrs Endothelial cell
regeneration

[34]

CTS/PLGA:  Chitosan/  poly(lactide-co-glycolide;  GT/  PCL:  Gelatin/
polycaprolactone;  PHBV:  Poly(3-hydroxybutyrate-co-3-hydroxyvalerate);
PLA/PEG: Poly(D,L-lactide)-b-poly(ethylene glycol); PLCL: Poly(L, L-lactide-
co-ε-caprolactone); PPC: Poly (propylene carbonate); CTS/PU: Chitosan based-
poly(urethane urea).

3. MECHANICAL PROPERTIES

One  of  the  main  problems  of  the  electrospun  fibrous
scaffolds  is  the  lack  of  evaluation  of  the  impact  of  solvent
retention in fibers on the scaffold’s mechanical properties [35].

D'Amato  et  al.  2018,  discussed  that  the  retained  solvent
can act as a plasticizer, modifying the mechanical properties of
the fibrous scaffolds such as brittleness and stiffness.  In that
sense,  that  study  evaluated  the  retention  of  solvent  and  its
effect  in  PGA,  PLCL,  and  PET  electrospun  fibers  through
themogravimentric analyses. The obtained results showed that
polymers  that  were  electrospun  below  their  glass  transition
temperature  (Tg)  held  solvent  and  polymers  that  were

electrospun  above  their  Tg  did  not,  which  affect  mechanical
properties such as Young’s moduli, toughness and failure strain
as the solvent evaporates [35, 36].

One  of  the  most  intriguing  polymers  utilised  in  the
electrospinning  process  is  poly  (caprolactone),  which  has
promising  mechanical  qualities,  is  less  expensive  than  other
polymers, is biocompatible, and has a slow rate of degradation,
making it perfect for tissue engineering applications [36]. It is
important to highlight that besides the polymers' properties, the
fibers' thickness confer the mechanical properties. Hence, PCL
possesses great mechanical properties for tissue engineering in
trabecular  bone,  skin,  blood  vessels,  liver,  lungs,  heart  and
kidney because its tensile module is about 62±26 MPa in PCL
fibers of 440-1040 nm, which is higher than the tensile module
of all the above tissues Table 2 [36].

Table 2. Tensile module of some human tissues.

Human Tissue Tensile Module References
Trabecular bone 10-3,000 MPa [37]

Skin 27.2±9.3MPa [38]
Blood vessels 8.3 ± 1.7 MPa [39]

Liver 12.16 ± 1.20 KPa [40]
Lungs 142 ± 8.84 kPa [41]
Heart 2.15 ± 0.15 MPa [42]

Kidney 180.32 ± 11.11 kPa [43]

4. BIOCOMPATIBILITY

Electrospun nanofibrous scaffolds possess morphological
parallels  with  the  extracellular  matrix  in  tissues,  which  give
them thanks to  cell  adhesion,  proliferation,  and cell  function
properties  making  them  ideal  for  tissue  engineering
applications  (Table  3)  [44].  Biocompatibility  is  the  most
important feature in electrospun nanofibers intended for tissue
engineering  [1,  2]  because  the  successful  role  of  the
electrospun  fibers  implanted  in  tissue  is  the  main  and  final
objective  of  any  biomedical  biodevices.  It  is  important  to
remark  that  in  order  to  achieve  biocompatibility,  the  low
cytotoxicity  of  the  nanofibers  is  crucial  [1  -  4].

Çakmakçı  et  al.  2012,  combined  UV  curing  and
electrospinning technologies to produce methacrylatd cellulose
acetate  butyrate  (CABIEM)  electrospun  nanofibers.  The
cytotoxicity of these nanofibers was evaluated using the MTT
assay  in  human  umbilical  vein  endothelial  (ECV304)  and
mouse  embryonic  fibroblasts  (3T3)  cells.  Also,  a  modified
collagen presence in the CABIEM fibers was proposed in order
to  enhance  cell  adhesion  and  proliferation.  Regarding  their
results,  the  CABIEM  fibers  appear  to  be  non-toxic;  authors
discussed that cell viability was related to collagen proportion.
The study encountered that cell adhesion and proliferation were
improved as the collagen concentration increased [45].

In another study, conductive electrospun fibrous scaffolds
of poly (pyrrole) (PPy) were proposed to rush the healing of
damaged tissues. Authors tested different proportions of PPy in
polymeric  fibers  and  concluded  that  the  presence  of  PPy
enhanced conductivity. It is well known that conductivity in the
electrospun  fibers  promotes  cell  adhesion,  growth,  and  cell
proliferation.  Hence,  conductive  fibers  can  be  proposed  for
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tissue regeneration of the heart, nerve, skin, and other tissues
where  electrical  signals  are  required  for  cell  communication
[46].

Table  3.  Some  examples  of  biocompatibility  studies
performed  in  electrospun  fibers.

Electrospun
Fibers

Cell Line Biocompatibility Study References

PCL/GP Rat stem
cells

Cell attachment and
differentiation assay

[44]

CABIEM ECV304 and
3T3 cells

MTT assay [45]

PPy/CTS/COL Fibroblast
cells

MTT assay [46]

TPU/PDMS Human skin
fibroblast

cells

MTT assay [47]

PHBV/PVA HUVECs,
SMCs and
MSCs cells

Flow cytometry and
immunocytochemistry

[48]

CABIEM:  methacrylated  cellulose  acetate  butyrate;  PPy/CTS/COL:
polypyrrole/  chitosan/  collagen;  PCL/GP:  polycaprolactone-cyclopentanone/
graphene;  TPU/PDMS:  Thermoplastic  polyurethanes/  Polydimethylsiloxane.
PHBV/PVA: poly(hydroxy butyrate-co-hydroxy valerate)/poly(vinyl alcohol).

Ginestra  P.  2019,  prepared  different  proportions  of
graphene  loaded  in  poly  (caprolactone)/cyclo  pentanone
electrospun fibers, presenting interesting mechanical behaviors.
Statistically  significant  differences  in  mechanical  and
biological properties were related to graphene concentration. In
the study, rat stem cells were exposed to these fibers that found
a great relationship between the graphene presence, taking into
account  that  graphene confers  conductivity  on the polymeric
fibers. Also, a higher proportion of dopaminergic neurons were
identified  in  the  study  related  to  higher  percentages  of
graphene  [44].

Finally,  Drupitha  et  al.  2019,  evaluated  the
biocompatibility  of  thermoplastic  polyurethanes/
polydimethylsiloxane  (TPU/PDMS)  electrospun  fibers  using
the  MTT  and  cell  proliferation  assay  with  human  skin
fibroblast cells. It was found that fiber morphology, porosity,
surface wettability,  and biological  and mechanical  properties
were influenced by the presence of the PDMS fraction [47].

CONCLUSION

Electrospun nanofibers have demonstrated their capacity to
improve cell proliferation in different cell lines in vitro and in
vivo. For the success of the fibrous scaffolds, it is necessary to
test  and  design  proper  formulations  to  confer  specific
properties that will  help the fibers interact with cells and the
surrounding  tissue.  The  high  tensile  strength,  flexibility,
reduced  permeability  of  water,  high  surface  area,
biocompatibility, and biodegradability are the most interested
properties for tissue engineering. However, not all the reported
literature completely screen these parameters.
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